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In this paper we review recent aspects of the measurement of oxidized DNA bases, currently a
matter of debate. There has long been an interest in the determination of the level of oxidized
bases in celiular DNA under both normal and oxidative stress conditionas. In this respect, the sit-
uation is confusing because variations that may be as large as two orders ofmagtude ba been
reported for the yield of the formation of 8-oxo-7,8-dihydroguanine (8-oxoGua) in similar DNA
samples. However, recent findings dearly show that application of several assays like gas chro-
matography-mass spectrometry (GC-MS) and [32P]-postlabeling may lead to a significant over-
estimation of the level of oxidized bases in cellular DNA. In particular, the siblation step, which
is required to make the samples volatile for the GC-MS analysis, has been shown to induce oxi-
dation of normal bases at the level of about one oxidized base per 104 normal bases. This has
been found to be a general process that applies in particular to 8-oxoGua, 8-oxo-7,8-dihydroade-
nine, 5-hydroxycytosine, 5-(hydroxymethyl)uracil, and 5-formyluracil. Interestingly, prepurifica-
tion of the oxidized bases fiom DNA hydolysate prior to the derivatization reaction prevents
arfactual oxidation. Under these conditions, the level of oxidized bases measured by GC-MS is
similar to that obtained by HPLC associated with electrochemical detection (HPLC-EC). It
should be added that the level of 8-oxo-7,8-dihydro-2'-doxynosine inm control cellular DNA
has been found to be about fivefold lower than in earlier HPLC-EC measurements by using
appropiate conditions of extraction and enzymatic digestion of DNA. Similar conclusions were
reached by measuring formamidopyrimidine-DNA glycosylase sensitive sites as revealed by the
single cel gel electrophoresis (comet) assay. Key words DNA base damage, DNA repair enzymes,
oxidative lesions.
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Oxidative damage to DNA is widely recog-
nized to be at least partly involved in cancer
and aging processes (1-3). Oxidation of
DNA components can be induced by a vari-
ety of factors including endogenous cell
metabolism, chemicals and drugs, ionizing
radiation, and solar light. Oxidation process-
es that may involve hydroxyl radical, ferryl or
perferryl ion, singlet oxygen, hydrogen per-
oxide, peroxynitrite, and one-electron oxida-
tion lead to several types of DNA modifica-
tions. These include chain breaks,
DNA-protein cross-links, abasic sites,
purine-reactive aldehyde adducts, and oxi-
dized DNA bases [for recent reviews see
(4,5)]. Some of the latter classes of lesions
have been unambiguously shown either to be
mutagenic or to block DNA replication
(6-M). In this respect, 8-oxo-7,8-dihydrogua-
nine (8-oxoGua) was found to induce G to
T transversion, whereas 2,6-diamino-4-
hydroxy- 5 -formamidopyrimidine
(FapyGua), the related imidazole ring open
compound, was found to be lethal (10).
Interestingly, various repair activities, mostly
of the N-glycosylase type (11-16) that take
care of oxidative base damage, have been
characterized in both prokaryotic and
eukaryotic cells (17-19). It should be noted
that the gene of several DNA repair enzymes
including those of Escherichia coli and yeast
OGGI have been cloned (20,21).
Altogether, this provides a strong impetus to

the development of accurate and sensitive
methods for monitoring oxidized bases
within cellular DNA (22). In particular, the
assays should be able to detect at least one
modification per 105_106 normal bases in a
few micrograms of DNA. Another major
limitation is the possible generation of oxi-
dation processes during the DNA workup
and the assay itself. Various chemical and
biochemical approaches have been pro-
posed. Indirect measurements based on the
use of antibodies, purified repair enzymes,
single-cell gel electrophoresis, or ligation-
polymerase chain reaction (PCR) tech-
niques are usually highly sensitive, but their
specificity is still open to debate. A more
direct approach involves the extraction of
the cellular DNA, followed by its conver-
sion through hydrolysis to either nucleo-
sides or nucleobases. Then, the complex
mixture of DNA fragments is usually
resolved using appropriate liquid or gas
chromatographic methods. The measure-
ment of the analytes is achieved on line by
sensitive techniques whose limits of detec-
tion are within the femtomole range. High
performance liquid chromatography associ-
ated with electrochemical detection
(HPLC-EC) and gas chromatography cou-
pled to mass spectrometry (GC-MS) have
been the most widely applied assays aimed
at monitoring oxidative base damage within
DNA during the last decade.

The Assays
HPLC-EC assay aimed at monitoring the
formation ofoxidized bases with a low oxi-
dation potential. The HPLC-EC assay was
initially developed for the measurement of
8-oxo-7,8-dihydro-2'-deoxyguanosine (8-
oxodGuo) (23). The HPLC-EC assay is cur-
rently the most widespread method and has
received hundreds of applications for deter-
mining the level of 8-oxodGuo within the
DNA of either isolated cells or animal tis-
sues. The application of the HPLC-EC
technique has been extended first to the
measurement of 8-oxo-7,8-dihydro-2'-
deoxyadenosine (24) and then to 5-
hydroxy-2'-deoxycytidine and 5-hydroxy-
2'-deoxyuridine. It should be added that the
levels of 5-hydroxy-2'-deoxycytidine and 5-
hydroxy-2'-deoxyuridine have been deter-
mined in the DNA of rat organs and human
leukocytes (25). The limit of the sensitivity
is on the order of 50 fmol of oxidized base,
which corresponds to one lesion per 106
normal base, in a DNA sample size of 10
pg. It may be added that the coulometric
detection is more sensitive than the ampero-
metric technique. However, one limitation
of the assay deals with the fact that only
bases with a low oxidation potential can be
measured by electrochemical detection.

GC-MS assay for measuring oxidative
DNA base damage. GC-MS is a more versa-
tile technique because it is less dependent on
the chemical properties of the measured oxi-
dized base (26). The mass spectrometer may
be set in the selective ion monitoring mode
so that it detects only the ions corresponding
to the major peaks of the mass spectrum of
the compound of interest. This provides a
specific and sensitive detection, which is, on
the average, in the same range as that of the
HPLC-EC assay. It should be noted that the
bases have to be converted into volatile deriv-
atives prior to their injection into the GC-
MS apparatus. In an improved version of the
method, an isotopically enriched internal
standard, which differs by at least three units
of mass, is added. An internal standard is
used to compensate for any loss of the sam-
ple during the derivatization step and also to
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compensate for the possible lack of repro-
ducibility of the injection. The GC-MS
assay was first applied to the detection of 8-
oxoGua in isolated DNA that was exposed
to y-radiation in aqueous solution (27).
Subsequently, the method has been applied
numerous times to the measurement of
many types of oxidative base damage in iso-
lated DNA (28-30) and within isolated cells
(31-37). It should also be mentioned that
the GC-MS assay has been widely used to
study the specificity of various DNA repair
enzymes including endonuclease III and for-
mamidopyrimidine-DNA glycosylase (FPG)
protein from E. coli (12,13,38-41). In addi-
tion, recent data on the kinetics of the repair
of several oxidative base lesions in cellular
DNA were inferred from GC-MS measure-
ments (42).

Discrepancies in the results obtained by
GC-MS and HPLC-EC measurements.
Comparison of the results concerning the
level of 8-oxoGua (or 8-oxodGuo) as deter-
mined by applying either the GC-MS or the
HPLC-EC method revealed large discrepan-
cies (43,44). As a general trend, the amount
of 8-oxoGua measured by GC-MS is about
10-fold higher than that inferred from
HPLC-EC. The level of 8-oxodGuo deter-
mined in DNA by applying the HPLC-EC
assay is in the range of 1-20 lesions/106
bases, depending on cells and organs.
However, the values are significantly higher,
varying from 40 to 140 8-oxoGua residues
per 106 normal bases in the samples that
were analyzed by GC-MS. Studies using
commercial calf thymus DNA are less easily
comparable, mostly due to high variability
between batches. However, a similar trend,
which shows a higher amount of 8-oxoGua
as measured by GC-MS with respect to
HPLC-EC determinations, can be observed.
Conflicting data are also observed in the lit-
erature for other oxidative nucleoside lesions
such as 5-hydroxy-2'-deoxycytidine and 5-
hydroxy-2'-deoxyuridine (25). These incon-
sistencies may lead to misleading biological
observations. For instance, GC-MS analysis
showed a relatively high level of 8-oxoGua in
breast cancer tissues (32,45), whereas the
amounts of 8-oxodGuo detected by HPLC-
EC in similar samples are close to those of
normal tissues (46). In addition, the level of
8-oxoGua in normal breast tissue is much
higher when measured by GC-MS than the
level of 8-oxodGuo as estimated, by HPLC-
EC (46). Several hypotheses have been pro-
posed to account for the observed low yield
of 8-oxodGuo when measured by HPLC-
EC. This could be due either to a lack of
complete enzymatic digestion of DNA or to
the occurrence of a dynamic equilibrium
between two tautomeric forms of 8-
oxodGuo that would prevent a quantitative

detection of 8-oxodGuo (43). However, it
may be concluded that at this stage, the pro-
posals, particularly the latter one, are not rel-
evant. In fact, no serious attempts were made
to solve the problem until recently, and con-
troversial data were still accumulating.

GC-MS overestimation rather than
HPLC-EC underestimation. The observa-
tion of such discrepancies in the level of
measured oxidative base damage to DNA,
and particularly of 8-oxoGua, is likely to
have its origin in at least one critical para-
meter, which has to be specific for the
experimental protocol of either the GC-MS
or the HPLC-EC assay. Let us first consider
the method used to hydrolyze DNA prior
to the chromatographic analytical step. An
enzymatic digestion into nucleosides by
incubation of DNA with nuclease P1 and
alkaline phosphatase is applied mostly in
the HPLC-EC method. On the other hand,
GC-MS analysis is usually achieved subse-
quent to acidic hydrolysis ofDNA by either
60 or 88% formic acid at 1400C. As already
mentioned, the enzymic digestion could be
incomplete; if this occurred, there would be
an underestimation of the level of. 8-
oxoGua (43). As evidence against this, it
was observed that an increase in either the
amount of nuclease P1 or the period of
digestion does not affect the level of
released 8-oxodGuo (Douki and Cadet,
unpublished data). It was also argued that
8-oxodGuo may depurinate during the
nuclease P1 treatment carried out at pH 5.5
(44). However, no experimental evidence
was provided to support such an assump-
tion. In contrast, it was shown that the N-
glycosidic bond of 8-oxodGuo is much
more stable than that of normal purine
nucleosides (47,48). Other results seem to
show that both explanations are unlikely.
When the same oxidized calf thymus DNA
was hydrolyzed by using either enzymic
digestion or hydrogen fluoride/pyridine
treatment and subsequently analyzed for its
8-oxoGua (or 8-oxodGuo) content by
HPLC-EC, similar results were obtained
(49). Interestingly, similar levels of 8-
oxoGua background within cellular DNA
were inferred from HPLC-EC measure-
ments involving the use of an internal stan-
dard, irrespective of either enzymatic diges-
tion or formic acid treatment (Ravanat and
Turesky, unpublished data).

Another major difference between the
HPLC-EC and GC-MS assays is the
requirement of the derivatization of the
DNA samples prior to their GC-MS analy-
sis (26). The oxidized bases or nucleosides
are usually made volatile by silylation,
using either N-bis-(trimethylsilyl)-trifluo-
roacetamide or N-tert-butyldimethylsilyl-
N-methyltrifluoroacetamide. Another

alternative is pentafluorobenzylation, which
constitutes a convenient approach for chem-
ical ionization detection of oxidized nucleo-
sides in the negative mode as a GC/electron
capture negative ion chemical ionization-
mass spectrometry assay (50,51). The silyla-
tion is usually carried out at a high tempera-
ture (120-140°C) for at least 40 min. In
fact, this appears to be the critical factor in
the discrepancies between the results of the
GC-MS and the HPLC-EC methods.
Unambiguous support for the artifactual
generation of 8-oxoGua in the derivatization
step (52 was provided by a careful compar-
ative study involving analysis of the same
DNA sample by both HPLC-EC and GC-
MS (Fig. 1). Formic acid was used to
hydrolyze DNA in both cases. In addition,
an aliquot of the hydrolyzed DNA sample
was purified by immunoaffinity chromatog-
raphy. With the exclusion of guanine, the
fraction containing 8-oxoGua was collected
and then analyzed by GC-MS. In agreement
with previous observations, the values for 8-
oxoGua obtained by applying the crude
GC-MS assay were higher than those
inferred from the HPLC-EC method. In
contrast, the levels of 8-oxoGua measured
by GC-MS after the prepurification step
were similar to those given by HPLC-EC.
The latter observation strongly suggested
that unmodified guanine present in the
nonpurified DNA hydrolysate was partly
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Figure 1. Comparative measurement of the back-
ground level of 8-oxo-7,8-dihydroguanine (8-
oxoGua), 8-oxo-7,8-dihydroadenine (8-oxoAde),
and 5-hydroxycytosine (5-OHCyt) within calf thy-
mus DNA using three analytical approaches
including the usual GC-MS assay, its improved
version (HPLC/GC-MS), and the HPLC associated
with electochemical detection (HPLC-EC) method.
The results, expressed in number of modifications
per 106 bases, represent the average of three
independent measurements.
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oxidized into 8-oxoGua during the silyla-
tion step. This received further confirma-
tion from the fact that the level of oxidized
bases increased with the time of derivatiza-
tion (52,53). On the other hand, there was
a decrease in the measured level of 8-
oxoGua in DNA when the temperature of
the silylation was lowered under conditions
in which the derivatization of the sample
was still achieved (54). The artifactual oxi-
dation of the overwhelming normal bases
during derivatization appears to be a general
process. This is inferred from the observa-
tion of increasing yields of 5-hydroxycyto-
sine (5-OHCyt), 8-oxo-7,8-dihydroadenine
(8-oxoAde), 5-formyluracil (5-FoUra), and
5-(hydroxymethyl)uracil with time during
the silylation of purified cytosine, adenine,
and thymine, respectively (55). It should be
noted that the levels of isotopically labeled
derivatives of the three oxidized bases used
as internal standards were not affected dur-
ing the silylation reaction. This rules out
any kinetic effect of the reaction. In addi-
tion, comparative measurement of 5-
hydroxycytosine and 8-oxo-7,8-dihydroade-
nine within isolated DNA was achieved by
both GC-MS and HPLC-EC; thus, we
concluded that the detection methods by
themselves are not involved in the former
observed discrepancies. It may be conclud-
ed that cytosine, thymine, adenine, and
guanine are subject to oxidation reactions
during silylation. In this respect, it is worth
mentioning that the oxidizing ability of
silylating agents was already recognized
more than 15 years ago. An interesting
example dealt with the preparation of sily-
lated derivatives of unsaturated pyrimidines
from dihydropyrimidines (56).

The relatively high levels of several oxi-
dized purine and pyrimidine bases, which
were determined by using the conventional
GC-MS analysis in the control samples of
nuclear DNA from rat liver and lung (36),
are thus highly questionable. Also question-
able are the high values of 8-oxo-7,8-dihy-
droadenine and 4,6-diamino-5-formami-
dopyrimidine that were measured in
metastatic and nonmetastatic cells from
human breast tumors (57) by applying the
earlier GC-MS assay. It should also be men-
tioned that the level of 5-(hydroxymethyl)-
2'-deoxyuridine in the DNA of normal and
cancerous breast cells as determined by a
similar GC-MS assay was estimated to be
around 3 5-(hydroxymethyl-2'-deoxyuri-
dine/104 thymidine (58).

Optimized GC-MS assay. It is clear
from the above observations that the GC-
MS analysis of targeted oxidized bases or
nucleosides requires their prepurification
from the related overwhelming normal
DNA components prior to the silylation

step. This could be achieved by either
HPLC or immunoaffinity chromatogra-
phy. A second major condition to be ful-
filled involves the use of stable isotopically
labeled oxidized bases or nucleosides as
internal standards for calibration purposes.
The use of 8-azaadenine in place of authen-
tic isotopically labeled internal standards
may provide flaws in the quantitative mea-
surement. In this respect, it was recently
reported that 8-azaadenine was not stable
under the acidic conditions used for DNA
hydrolysis (59).

In addition, two other important para-
meters, which are not specific to the GC-
MS assay, have to be considered. One para-
meter, the conditions of acidic hydrolysis
used for inducing the quantitative release
of the oxidized bases to be measured, has
been neglected during the last decade. It is
a requisite that the conditions of hydrolysis
should be optimized for each new com-
pound to be measured. Emphasis has to be
placed on the stability of the compounds
under the conditions where the N-glyco-
sidic bond of the related nucleotides is
quantitatively cleaved. It was recently
shown that treatment of several major
DNA base oxidation products by hot 60%
formic acid, which is a recent alternative to
the use of concentrated 88% formic acid,
led to significant degradation processes
(59,60). In addition, the formamidopyrim-
idine derivatives of guanine and adenine
were found to undergo recyclization upon
conditions of formic acid hydrolysis.
However, the integrity of the latter imida-
zole open ring compounds is maintained
upon treatment by hydrogen fluoride in
pyridine, a mild DNA hydrolyzing reagent
(Douki et al., unpublished data). Another
major aspect that may be a limiting factor
in the sensitivity of the assays is the artifac-
tual oxidation of the overwhelming normal
nucleobases during DNA workup includ-
ing extraction and hydrolysis.

Improved conditions of extraction and
enzynzatic digestion ofDNA. During the past
3 years, efforts have been made to minimize
the artificial increase in the level of 8-oxoGua
during DNA extraction by using suitable sol-
vents and antioxidants (61-64). Particularly
relevant are the recent reported results show-
ing at least a fivefold reduction in the level of
cellular background of 8-oxo-dGuo in cellu-
lar DNA with respect to the lowest values in
the literature (65). The improvement in the
DNA extraction and the simplification of the
enzymic digestion process, which both lead
to a significant reduction of the workup peri-
od, are likely to explain the low values of cel-
lular 8-oxodGuo background. Thus the lev-
els of 8-oxodGuo were determined to be
2.6-3.0 and 3.1/106 2'-deoxyguanosine

residues within the DNA of rat liver (66)
and human leukocytes, respectively (67). It
should also be noted that 8-oxodGuo values
as low as 3.07 ± 1.45 and 2.37 ± 1.21/106
2'-deoxyguanosine residues were determined
in human polymorphonuclear and mononu-
clear leukocyte DNA using an anaerobic
DNA extraction followed by HPLC-EC
measurement (68,69). These data, which
were obtained using the conventional and
accurate HPLC-EC assay, clearly indicate
that it should now be possible to search for
the formation of 8-oxodGuo under mild
conditions of oxidative stress by applying the
above improved conditions of DNA extrac-
tion. In addition, kinetic studies of 8-
oxodGuo repair within cells should also be
facilitated. However, the main message of
these interesting findings is that the back-
ground level of 8-oxodGuo is less than 1
lesion/105 normal bases in cellular DNA as
inferred from HPLC-EC measurement.

Single cell gel electrophoresis (comet)
assay for visualizing FPG-sensitive sites.
Interesting information on the estimate of
8-oxodGuo in the DNA of isolated cells
was obtained by making the comet assay
more specific. This was achieved by digest-
ing the DNA of the embedded cells in
agarose gel with E. coli FPG enzyme added
(70,71). The latter FPG protein is able to
cleave DNA at the sites of 8-oxoGua, and
the additional nicks thus generated were
subsequently revealed by the analysis of the
comet assay. The level of 8-oxodGuo mea-
sured in single cells is about 10-fold lower
than was determined by the HPLC-EC
method. This is in agreement with previous
measurements of oligonucleotide strand
breaks when an alkaline elution assay was
performed after extraction of the DNA
from mammalian cells and its subsequent
incubation with the E. coli FPG protein
(72-74). The level of 8-oxodGuo thus
determined in the DNA of human leuko-
cytes (1.7/106 2'-dGuo) is similar to the
values obtained in related DNA samples
when improved conditions of extraction
and digestion ofDNA are used (67).

Overestimation ofthe lvel of8-oxodGuo
by [32P]-postlabeling and immunoassay
measurements. Another recent source of con-
fusion in the field of the measurement of
oxidative base damage to DNA is provided
by a recently introduced [32P]-postlabeling
assay aimed at monitoring the formation of
8-oxoGua (75). The [32P]-postabeling assay
of the basal level of 8-oxodGuo within the
DNA of various rat tissues gave values 10- to
50-fold higher than those reported by
HPLC-EC detection. For example, the
amount of 8-oxodGuo was found to be 87 ±
29-133 ± 49/106 normal bases. These high
values may be explained by self-radiolysis
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processes associated with the presence of the
predominant [32P]-2'-deoxyguanosine 5'-
monophosphate in the reaction mixture. The
emission of the 3 particle is likely to induce
the formation of 8-oxo-7,8-dihydro-2'-
deoxyguanosine 5'-monophosphate through
radical reactions. In this respect, the incorpo-
ration of [3H]-thymidine within cellular
DNA gives rise to significant amounts of
5,6-dihydroxy-5,6-dihydrothymidine as the
result of self-radiolysis reactions. The levels
of thymidine glycols as estimated by the ace-
tol assay (76) were within the range of 1
lesion/103 thymine residues (77). Also, in
this case, the high level of 5,6-dihydroxy-5,6-
dihydrothymidine background precludes any
application of the assay at the cellular level
(78). Work is in progress in our laboratory to
develop an accurate and sensitive [32P]-post-
labeling assay for measuring 8-oxodGuo.
This involves a HPLC prepurification step to
prevent artifactual formation of 8-oxodGuo
through radical oxidation. A similar HPLC-
[32P]-postlabeling approach was already
applied for the determination of 2'-
deoxyadenosine N-1 oxide and 5-(hydrox-
ymethyl)-2'-deoxyuridine (79,80). Another
example of overestimation of the measure-
ment level of 8-oxodGuo is provided by an
immunoslot blot assay (81). Musarrat and
Wani (81) reported that the polygonal anti-
bodies directed against 8-oxodGuo were able
to detect one residue of the latter oxidized
nucleoside per 15 and 9 normal nudeotides
in the DNA of human skin fibroblast cells
upon exposure to 10 and 100 1iM H202,
respectively. This is probably due to the lack
of specificity of the antibodies because it was
shown in other studies that both monoclonal
and polyclonal antibodies raised against 8-
oxodGuo show significant cross-reactivity
with 2'-deoxyguanosine (82,83).

Conclusion
It is now well established by at least three
independent groups that the conventional
GC-MS assay (26) suffers from a major
drawback: the overestimation of oxidized
DNA bases or nucleosides. This is due to
the artifactual oxidation of the related nor-
mal DNA components that occurs during
the silylation step. However, this artificial
oxidation may be easily prevented by, for
example, prepurifying the compounds of
interest. Therefore, an accurate version of
the GC-MS assay that also requires the use
of isotopically labeled internal standards is
now available. In addition, significant
improvements have been achieved in the
techniques of DNA extraction and hydroly-
sis in the GC-MS assay and also in the
HPLC-EC assay. Most of the reported GC-
MS measurements of oxidative base damage
to DNA have been artificially overestimated.

This raises the question of the validity of
most of the conclusions concerning the lev-
els of oxidized bases not only in cellular
DNA but also in isolated DNA. In addition,
the quantitative aspect of GC-MS studies
dealing with the specificity of DNA repair
endonucleases is also open to debate. Most
of the previously reported works should be
reassessed using either the more restricted
HPLC-EC assay and/or the improved GC-
MS method, which has a wider application.
Interlaboratory trials should compare, opti-
mize, and validate the various available
assays. These include immunological, [32p]
postlabeling, ligation-mediated PCR, and
single cell gel electrophoresis methods, for
which calibration is also required.
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